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ABSTRACT

The technique of Kalman filtering described by Ghil et. al. (1981)

is applied to a 2-point model. This note is intended to make this technique

more familiar at NMC and to point out its advantages and dangers. Two methods

of allowing for ignorance of true dynamical factors are illustrated.
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1. Introduction

Ghil, et. al. (1981) have used a linearized one-dimensional version

of the shallow water equations to explore the effect of Kalman filtering

on a meteorological data assimilation system. This type of filtering is

a method of statistically estimating the true state of a dynamical system

whose evolution in time obeys a set of prediction equations and whose

state is observed at intervals so the estimated state can be corrected

(Gelb, et.al., 1974). The prediction equations deviate from the true

system by random noise, and the observations are expected to have errors.

The principal difference from a conventional meteorological data system

lies in the attempt by the Kalman procedure to predict "first guess error

covariances accurately. Little thought has yet been addressed to this

question in conventional meteorological systems. The paper by Ghil and

collaborators therefore represents an important step in raising our

awareness.

2. Effect of bad first guess error

Consider a single variable with a forecast value F and an observed

value 0. In the usual way, we form an analysed value A from these by a

linear combination:

A = F + (O-F). (1.1)

This will have an error

e,= A-T - f + oCE-4)) (1.2)

where f is the error in F and G is the error in 0. The expected value

of a., denoted by , is given by I d), + f if f and

are uncorrelated. The value ofC(that minimizes this is

=fto )- s+ Ca )(1 
\ * J /
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and produces an analysis error

Ox~~-' A 4 e I.e
(1.4)

Suppose however, that an incorrect value of , denoted by ) is

I
used. This would lead to a value Ot :

OI

(1.5)

But the true analysis error is given byo./ - + (

(1.6)

and we find that if f is the true error in F,

t2 ~~ L Of --~~C -
(~~~jV~~~ -~~(1.7)

Figure 1 delineates two regions of the 4, a plane where at exceeds

either the true first guess error , or the observation error e m. It

is the second of these which is most disturbing, since one could do better

in this region by omitting the prediction and analysis steps and simply

using the observed value O for A. This occurs only when the (incorrect)

first guess error Iz is less than the true first guess error

In the remainder of this paper a simple model with two degrees of

freedom will be used to illustrate the potential advantage of this

approach and to also illustrate the potential dangers. In this note I

will add a meteorological flavor by focusing attention on a dynamical

system that may be unstable, but I will often shorten the discussion by

omitting consideration of such matters as the requirement for an unbiased

estimate. The book edited by A. Gelb (1974) also contains a discussion of
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these aspects in the many illustrations it contains of simple mechanical

and electrical systems.

3. The two point system and definitions

Let subscripts 1 and 2 denote two points at which analyses and obser-

vations are made. (In a more general treatment their location could vary

with time.) We introduce the following notation (i,j = 1 or 2)

7• = true state variable at point i, time n.

= observation of 9T4

= observation error= O-

A. = analysed value at point i, time n. (3.1)
$i* = A0. = analysis error = A,- Tt

FSM = forecast value at point i, time n.

fia = forecast error = F --f4p I*9

An overbar will be used to denote an ensemble average. The ensemble we

have in mind is a large collection of independent runs of an assimilation

system, in which each run consists of repeated iterations on n of two

successive steps:

Anl -(prediction).4 Fn

(3.
Fn+ On -(analysis)+A n

The ensemble average is taken, at fixed Fl, , over all of the runs.

We will make several uses of the following relation. Let e ant

represent any of the error quantities e,a, or f. Suppose y and z are

defined as fixed linear combinations of i19 and a :

y = Cl'x2 + C2,x2 + Ry,

(3.:z = C3.x 1 + C4.x 2 + Rz,

where we have also added a random variable R ("noise"). If these

equations are multiplied and then the statistical average performed, we

2)

I 4Ia

3)
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obtain

W j = C, C3 ,Y, t {C y CC ,ZztCC Kf;s (3.4)~~ CC3 - -(CY ,C2 C3 ;) z tC/ Ix A 3.

if R is uncorrelated with A, and 4 . In other words, the linearity of

(3.3) enables the covariance yz to be computed from the covariances

at+/, x , fL and 1 4 ' is a powerful result, but clearly

depends on the linearity of (3.3) and the independence of the noise R.

Its power results from the fact that while we cannot know the individual

errors ~1 and ?. in (3.3), we may be able to specify their covariances

in (3.4).

4. The prediction system

In order to make use of (3.4) we need a linear prediction system. A

simple one that is not devoid of meteorological meaning can be fashioned

from a moving wave model: t

q~tz,&) =const- C o^(i 6t= Al{t}~~Ca. * 8t B g 1 4 ~(4.1)
where

Arty of a t
a ty) = cas -c, 4tA et (4.2)

A and B satisfy the differential equations

dA Idf -- R t -evB.
(4.3)

If the assimilation times are denoted by t = njt, n = O,l,...,etc., the

solution of (4.3) is

A =~ / 1
M*FAs .- VAO i- ^ 

41if _- *1Ad tt %o 41 (4.4.)

! I 
I



6

where

44t (4.5)

V~~ e -next ) a- r A t. tod 

Alternatively, we can imagine(4.3)being solved by finite differences

in time. If differences over n, n + 1 are used for the d/dt terms, and

averages over n, n + 1 are used for the terms on the right side of (4.3)-

i.e., an implicit forecast method - one arrives at the same time - stepping

procedure as (4.4) except that W. and/ are replaced by

V -

(4.6)

in which andod are defined byl

2 _ > > /2 } ob eV= CY 8 * (4.7)

Equations(4.4) are taken as the approximate equations of the true

state, and their approximate character is assumed to be representable by

simply adding random noise r to obtain the behavior of the true state T1,

T2:

(4.8)

The computational stability is assured by the fact that T2 ,; L

approaches I + ) At as t -" O
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The Ghil, et. al. approach is now to assume that the deterministic prediction

system is used for the assimilation system, without the noise.

F = a . A/{ 2s- A
(4.9)

r is omitted from (4.9) because it is unknown in detail, so that (4.9)

then gives the best individual estimate of T/.! . Subtraction of (4.8)

from (4.9) gives the error prediction system

4 ~-Vd /a
tM$I 4{0 / 50 ' ! (¥.10)

Following the technique described at the end of Section (3) now gives us a

prediction formula for the first guess error covariance (fifj)n+l as a

function of the analysis error (aiaj)n at the previous assimilation time:

M+ 1 -

i~~~~~~~~~~~~4 (fe4z gt )ost^taw,^+^ (4.11)

ActOt ~('} t;;/4) Q,$ FVo -4,/ -hi )t

We have assumed no correlation between ri and aj.

Ghil, et.al. find it necessary, in their use of a linear shallow

water system to introduce a Rossby-wave filtering step. This step can be

omitted here because according to Phillips (1981), analyses are to be

analyses of slow modes only, observations are to be used only after they

have had fast modes subtracted, and the first guess error covariances

are to refer to slow mode errors only. (4.8) and (4.9) therefore are to

be interpreted as referring only to slow mode prediction. In fact all

errors herein - observations, analyses and forecasts - refer only to
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slow mode variables.

5. The analysis system

In the approach described by Ghil et. al., this is identical with

the familiar optimum interpolation system used meteorologically, except

that no approximation will be made in the first guess error covariances.

To derive it in the present context, we first set up the equations:

A,= F F.(4- 1 ttO2-f)

i-, FttY(O,-E,)t~tt-F). (5-1)
All quantities are at a common time. These express the desired analysis

as being equal to the first guess plus correction terms that depend on the

differences between the observations and the first guess. By subtracting

Ti from Ai, Fi, and O0, we obtain the error relations

a, . +a (e,- t (C-" (5.2)

We square these and take the ensemble average as in (3.4). For simplicity,

we assume that first guess error fi and observation errors eC'are not

correlated. (This assumes that At is not too small in the prediction

system or that 6- is correlated with SE-. . ). We then choose i
CAI 4 elnfl

and so as to minimize al a, and choosel'and to minimize a2a2 . The

result is os -ti )

ta f 62 t At-;~eg7 4 (5.3)

a Ek, (171 )z *et)& - il TZ ok )
(The denominator 4 is positive.)
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The resulting analysis error covariances can be evaluated by

substituting these into the squared forms of (5.2). One finds (after

some algebra)z 

Our system is now complete, if we can assign values to

a) The prediction coefficients V an . _
b) The prediction noise: v" and 

c) The observation error: 6 and 

That is to say, given a set of analysis error( aiaj)n, for the

tion time, the prediction system (4.11) predicts the first gueE

f f.~I at assimilation time n + 1. Then (5.4) - with the

(5.4)

4 

nth assimila-

ss errors

definitions

2 At NMC, the "diagonal" analysis errors ala1 and a2a2 are calculated in

the ITSOL subroutine. The value of ala2 is ignored, however, since correlation

between forecast errors and correlation between analysis errors are prescribed.

It may be useful to relate the specific notation used here to the more gener-

al notation used in the paper by Ghil, et al. and the book by Gelb. Our analysis

weights I CL, B, S correspond to their "Kalman gain matrix" 

The first guess errors H fj'n at assimilation step AL correspond to

error
their covariance matrix P - at step i . The analysis errors

A h

~.t~ ~are equivalent to P -) . In their treatment the vector of

observation is given as a linear function (their matrix H ) of the vector

of true state var iables (plus, the observation error vector). In our case 

is an identity matrix. In a normal grid point model, however, d would

be needed to interpolate between observation and grid point location.
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(5.3) - enables the i .+lto be calculated for the n + 1 assimilation

step.

This system is very stable when the noise r
2 is not zero. Steady

states in which fifj and aiaj no longer change from n to n + 1 are reOded

quickly in few cycles if r
2 > 0. An analysis of this is presented in

the Appendix for the special case of E � ,o k A a A 4 r=, s= 

RrWA- , =-AI In this case the steady state values of flf2 and

ala- are zero, and flfl = f2f2, alal = a2a2. For large r2 with fixed

e , formulas (A.9) and (A.11) show that

4V 4 OP

a,4, -~~~~ e -@~ ~~ -Bs +(5.5)

The prediction system is here dominated by the large random forecast

noise, but the Kalman method is still able to reduce the effect of this

potentially large error source to a level where the resulting errors are

somewhat less than the observational errors. The prediction system has

been told the correct value of r
2, it must be remembered.

For r2-) 0 with fixed G
t the limits are more complex, and depend on

0.

a. O /r.' = / (a neutral wave)

61,Q el -P ;>,^W Ahg

(5.6)

(As shown in the Appendix, this state is approached very slowly.)
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b. /A(~S I (damped wave)

r~~
-aLs- ~i- U(~) Jt# °. Y(5.7)

c. B -/$> By> | (amplifying wave)

CQ s elk F tsv,) t 0(X.(5.8)

(These three cases agree with the equations (4.7c) and (4.7d) of Ghil,

et.al., for the noise-free one-variable system.) In all cases ala- is less

than the observational error , as required by (A.11). The value for

ala1 in the steady state is significantly less than Gt however only for

the case of small r2 and a wave that does not amplify too rapidly. Since

(A.10) for the steady state can be written as
3

t ~ ~ ~~~I I I 

we see that this can only be achived by flfl< 
& , which requires

small values of r2. (It will be seen in section 7 that this possibility

is greatly limited when V and are not known precisely.)

6. Comparison with NMC practice

Although the previous sections have considered only a 2-point system,

it is possible to use it to expose the differences between the Kalman

approach and the analysis methods at NMC. One obvious difference is that

in (5.3)-(5.4) all observations are used in analysing each variable,

whereas in practice only those close to the analysed point are used.

3 This is an example of the relation (4.2-19) in Gelb.



12

This is a limitation that is now becoming understood as a feature to be

minimized,as far as computer power will allow, and we therefore ignore 
it here.

The computation of ala 2 in (5.4) is not a feature of the NMC system,

however. It cannot be ignored in (5.4) because ala2n is needed in (4.11).

But at NMC the equivalent of (4.11) can be characterized asIAI -4P
(6.1)

G2 represents an assumed growth of error during the time between up-date

analyses. In this role it is analogous to the noise terms rlr1 and r2r2

in (4.11). p in (6.1) denotes a correlation coefficient computed from a

reference set of forecasts verified over the United States. As such the

forecasts on which it is based were in turn based on analyses whose

errors reflect the excellent data from the continental rawinsonde

network. We cannot expect this fixed f to reflect adequately the partic-

ular data mix present in other parts of the world and on every assimilation

analysis t .
The potential importance of this correlation can be seen in the

analysis coefficient equations (5.3). 3 and i in those equations

represent the analysis weight for observation 2 in the analysis at point

1 and for observation 1 in the analysis at point 2. The formula for ,

for example, can be rewritten as

/3 ML e'<.2 -% f ~ J X(6.2)
rf I
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where p and denote the correlation coefficients based on flf2

and e~ . It seems reasonable that there will often be a strong

tendency for similarity in the ratio of first guess rms error at 2 points

to the ratio of rms observing error at those two points. The size of

+ e
is then proportional to the differences between P and . The latter

is prescribed (or at least assumed so!) for the observing system, whereas

may vary from one assimilation time to another as data mixes

change.

The practical significance of the above argument for the importance of

predicted as opposed to climatological first guess error correlations

remains to be seen. The following section records an initial step toward

considering this point.

7. Comparison with an approximate system

This can be done by constructing an approximate version of this simple

two-point model patterned along NMC lines, and by evaluating the true

error of the analyses made by this system.

With respect to the prediction equations, the approximate system will

replace (4.11) by

(7.1)

({o+ -- Xa i^t44 

a~~~"

a.+^s. = e 10{-ti.
where p is a precomputed correlation coefficient that is kept fixed during

a "run". (7.11) ignores the 4 effect in (4.4), as if the "wave" was

not translating and forecast errors were a purely local process.

The approximate system will use the optimum interpolation equations

(5.3)-(5.4), except that the last equation in (5.4) is irrelevant. How-

ever, the equations (5.4) only compute the apparent error of the approx-
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imate system. It is more important for our purpose to know the true

error of the approximate system. This can be done by running a parallel

evaluation system. This will imitate the 12-hour forecast errors that

are computed at NMC by comparing forecasts with verification data and

will be similar to the computation of 6Z in section 2. This evalu-

ation system will use the "correct" prediction equation (4.11) to

compute the true first-guess error of the approximate system. The true

analysis errors of the approximate system that are used on the right

side of (4.11) must be derived by returning to (5.2). In this special

use of (5.2):

A. o B. gi are the coefficients computed by the approximate

system according to (5.3), using the apparent first guess error
covariances (7.1) of the approximate system.

B. fifj is replaced by the true first guess error of the approximate
system.

For example, the true alal analysis error of the approximate system derived

from (5.2) is given bya = * (, (+ 0i{as ,rg,/rt(3 ,g+ a{

.4 * , S s t @ev~s~e t {J{L )Jw (7.2)

where A and ( are computed according to A above, but fifi has been

computed from (4.11) using values of aiaj from (7.2). In this way the

approximate system is associated with two sets of error statistics - the

apparent set that it "thinks" are correct and the "true" set.

Numerical exploration of the iterative use of (4.11) and (5.3)-(5.4)

shows that a stable stationary state is attained very quickly when >&

and that this state is independent of the aiaj (or fifj) that is

assumed at n = 0. (The equilibrium state is derived mathematically
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in the Appendix for a simple choice of (.. and rirj.

The tests described in this section used the following choice of parameters.

= I , = -, = . - o1
= T= r + 3 days (7.3)

ae -=e A uf
ape= 0.3%/Qys.

The finite-difference forms (4.6) were used, with the result that Z =

0.63231 and = 0.91833.4

The complete Kalman system under these conditions quickly arrives at

the stationary state

ala- = 0.489045

a2a2 = 0.743905

ala2 =-0.027396 (7.4)

flfl = 1.842071

f2f2 = 1.690657

PK = -0.079706

where = ff 2 (flf x f2f)-1/2.

The approximate system was run with the same choices of (7.3), as

described earlier in this section, for five arbitrary preassigned values

of I ( -.6, -.3, 0, +.3, +.6) and a special value. This special value

4 These correspond to use of the exact form with a period and doubling

time of 3.25 and 3.18 days instead of the 3 days and 2.5 days given

in (7.3).
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W ~ was obtained by imitating an "off-line" empirical evaluation of t . A

run using = 0 quickly settled into a steady state in which 

in the evaluation system was p . This value was then used as tP in a

second run of the approximate system and produced a new value . in

the evaluation system. A. was then used in the 3rd run of the approximate

system. This process stabilized to a value of = -.077474 after 5

substitutions. (A value of -.074424 was already obtained for .)

The closeness of these numbers to the true value in (7.4) suggests that

an empirically assigned p is indeed a stable number if data type and

location is fixed and if the dynamical system parameters are constant

and known.

Figure 2 shows the apparent and true total analysis error e, f t

obtained for different A values, as well as the single Kalman point

for reference. In this simple fixed observation system the empirically

determined coefficient seems to be adequate. However, if the observing

system was to change from day to day it could lead to significantly less

accurate analyses than the ideal system would produce. An important

aspect of the figure is the complete unreliability of the apparent

analysis error as a guide to the correctness of the assumed p

8. Behavior of an incorrectly known system.

Gelb, et. al. (1974, p 232) points out that incorrect specification

of the dynamical constants (our and 'S ) can lead to malfunctioning

of the Kalman system. In the meteorological context the linear prediction

equations of section 4 would presumably be derived from linearization of

the atmospheric equationWof motion as suggested by Ghil, et. al. (1981).

In this concept the "perturbation" is the error and our parameters/ and

would be replaced by functions of the analysed field. Thus uncertainty

will be introduced both by the linearization assumption that errors are
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Figure 2. True and apparent analysis errors of the system based on
empirical first guess error correlation 
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small and by uncertainty in the analysed fields. This problem can be

illustrated to some extent with the present 2-point model. One possible

corrective treatment, as one might expect, is to use a value for the

system noise ,Ak that is large enough to accomodate, in some sense, our

uncertainty about/ and ; . The problem is to use only as much added

system noise as necesary, since very large noise leads to an analysis
4~

error that is not much less than the observational error [ cf. (5.5)].

Suppose that the complete Kalman system consisting of (4.11) and

(5.3)-(5.4) is used, but that incorrect values for some of the system

parameters are used, as follows.

"Incorrect" System Correct Value

0, and the ero valuefo .

don tohisteadxsatpe°n thisnat the appaentfrvationals errors are asw orety u

follows: _-

~ ~ {L O . (8.2)

The analysis weights st ch r t i n t his stata e are given by (5.3).

of this / e andplethenan the zbevtinlerrorvlu fore knw 4rety u

As shown in the Appendix, the incorrect system will eventually settle

down to a steady state. In this state the apparent first guess errors are as

follows:

(8.2)

Teanalysis weights (6 in this state are given by (5.3).
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Under conditions (8.2) they are

(8.3)

The true analysis errors of this system are then found by introducing

(8.3) into (5.2). We obtain

aa~a ( Aid)IrAI& d
4~--4r t:,-,)',(7i (8.4)

where . are now the true first guess errors of the incorrect system.

These are in turn prescribed by the prediction system (4.11) using the

correct / and 4i-. ·

Let us define the following combinations of these true errors:

X- - {<4t^{|,* nd 2 t et ] i ct] (8.5)

Introduction of these into (8.4) and (4.11) leads to a simple system to

describe their behavior after attainment of the steady state (8.2)-(8.3).

X~fT - S ( Xft~ toa) ' R (8.6)

X 2 1 (8.7)

where

0'
(8.8)

and .'t is defined by (8.2). (8.6) has the solution

,,Q -" .(- ,) ,) ( 8.9)X4 .t (,m ~~~~A -t R )0 ~~(8.9)
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where X6 is the value of X at 4 = O (the beginning of the steady state).

(8.4) shows that the analysis error being made by the incorrect

system is

2 latat . ^, 4aa e
(8.10)

-E

Unbounded growth of the true first guess error X now produces unbounded growth

of the analysis error because the observations are not being used correctly.

[If X = A - as it would ideally - (8.10) would equal E aO/(IK t).]

The incorrect system will therefore produce disastrous results unless

.42 I o. This requires that

RIt &+ 14+~/g~*tz2§ll I &rt (8.11)

If R = o , and tt , this will be satisfied if and only if 0- is

also less than 1. If I = 0 and OI> 1, it is satisfied if and only if

c'~ ~ Ot (i.e., need not be as large as d .) We

note however that (8.11) can always be satisfied by making R large enough.

A more meaningful criterion is to require that the averaged analysis

error of (8.10) be less than E , i.e., that = Xt )(It ) < .

This criterion is relevant because e is the analysis error obtained by

completely ignoring the assimilation system. (cf. the discussion in

section 2.) Assuming for the moment that _2 < I , the asymptotic

value of X from (8.9) is (,_ p t2+ R )/(I--Q.) . Thus we

require that

- X e1t4NZ
=^~~~~~~ ~~~ (8.12)

I Cite) er



I 2 3 4

2from (8.13) as a function of 0; from (8.13) as a function of

3

2

0
0

Figure 3. and 0-
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be less than 1.

Consider first the case where the correct noise is used ({R' R),
but that o differs from r . (8.12) and (8.2) can then

be manipulated to show that " will be greater than 1 if

'*< ' . -----------Xr Or_ _>G > , (8.3)

Figure 3 shows this relation. It contains the critical curves 0' d-

in the or , plane for the indicated fixed values of R .

If o is used with j ,when the true values are 0 and R
will exceed 1 if Cr lies to the right of the particular L curve

/
shown in Figure 3. If 0 lies too far to the right the criterion.2C I

will also be violated and the true analysis error will be unbounded.

The problem we face then is that if O' underestimates r we may

have an assimilation system that is worse than no assimilation system at

all. Figure 2 suggests that we might be able to avoid this by using an

artificially increased value of R . The problem is to avoid going too

far in this direction, since (5.5) shows that at large O the apparent

value of " will be

aap*/ R /- He, a 1- , (8.14)

The true value will be even larger and we would again be better advised

to ignore assimilation.

Let us suppose that we can confidently set an upper limit to

the values of o and ' .

r$r(
... ,
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and explore the possibility of replacing the true system noise R by

R XR I (8.16a)

or

iota = Cac ; b) 5 (8.16b)

This has the following intuitive justification.5 e in (8.16b) can be

interpreted as a conservative estimate of the analysis error.

( O. -_ ¢F) , which is positive, represents the maximum possible

underestimate of the true dynamical growth rate. The product therefore

represents a reasonably bounded estimate of the additional error caused

in the prediction step by our ignorance of the true . Returning then

to (8.2) we find from (8.12) that the condition -< 1 becomes

(8.17)

The definition (8.16a) for R satisfies this requirement even without

the non-negative square root term. We also find that-4L is now given by

I 'tOr+ +a (8.18)

< _ 

so that our use of the asymptotic value of X in (8.17) is justified.

Figures 4 and 5 illustrate the effect of using (8.16). In both

figures O 7 V and OR / . The solid curve in each of

these figures gives the true normalized analysis error F for the

5 Gelb also discusses the addition of extra system noise to overcome errors in

modeling system dynamics (p.279,ff).
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"uncorrected" system that uses 0r (the abscissa) with the original

Ra I . Figure 4 has the true d- equal to 0.8 while Figure 5 has the

true r equal to 3.2. In Figure 4 the uncorrected system does not

produce dire results even when it has t I . In Figure 5 on the

other hand, the uncorrected system begins to do very poorly when < ~4

and produces 6 values greater than 1 when d < 8 ·

The dashed curves show in both figures the true normalized analysis

error " that results from using Or with R replaced by (8.16a).

They change very little with t . In Figure 4 the result is not as

good as the uncorrected system, but : is still everywhere less than 1.

In Figure 5, on the other hand, the loss in accuracy is trivial for

~t~ , while the improvement in accuracy is marked for 6t < o

The corrective procedure (8.16) is therefore very beneficial when

the true or is greater than 1, but it produces somewhat worse results

when the true o is less than 1. Its overall benefit therefore depends

on the likelihood that d0(true) exceeds 1 and the likelihood that when

it does the estimate l' of e(true) will be significantly less than

1.

Other choices than (8.16) are possible in an attempt to cope with

uncertainty in 0 . For example, a surprisingly effective choice is to

use a fixed value of Or such that - in (8.12) becomes equal to 1

when ' . to~'=~. R _I ,(8.19)
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Figure 6 lists the results obtained when this is done, in comparison with

the ideal results obtained by knowing the true O- . The results seem

attractive even when the numerator in (8.19) is negative.
6

Although both (8.16) and (8.19) have some promise as a way to react

to uncertainty in Or , it must be remembered that these tests are not

only for a 2-point model, they are performed under conditions where,

because 6 m and O , the approximate and the true solution

are such that and d are zero. The steady state therefore

depends only on Or , and not on the relative size of m, 

and / . Furthermore, the convenience of examining only the steady

state results presumes that the incorrect r and the true d- are fixed;

day-to-day variations are not considered.

6 This treatment appears to be an example of the S

described on page 245 of Gelb.

sensitivity measure
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APPENDIX

The behavior of the system is easiest to see when the observational errors

are equal ( 6 and uncorrelated ( t 0), and

the system noise errors are similar (A,1 A.S)and also uncorrelated

{#1 = O) . The results, in retrospect, appear to have some similarity

with the one-point ("scalar") system analysed in section (4.3) of Ghil,

et al.

We first define, for convenience,

M _ f, TO O-W 4 

~~ -
4lh A r

(A.1)

and

The 0/I analysis equations reduce to: [_ .1U-± 7 . -

4': j4, 7*6
- t {t,,.,)t,~.) -'~~ 

The prediction equations are

'-)d, t V?

where the prime denotes 4M"- for the step afte

now convenient to define

W _ ##98 od S _1d

o~ x a A .2

(A.2)

(A.3)

d,- * R "

3 * R.2 (A.4)

er the 41Ain (A.3). It is

(A.5)

14 is

_ 

Ia

4 : e--,

,VI --w ) *iS 
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The system reduces to one in the two variables I and

~ ( ~ ) Z++ Q (+ -j )] + 44 } (A.6)

2 I _ (* 2 2 (A.7)

where in the new notation

1/' /# 4+ { -)'
A stationary state for non-zero S exists in (A.7) if ._ . But

this is not possible for 4e in (A.6), since .i /$ J

as is . Therefore must be zero in a steady state. From

this we conclude that

Steady state:

an4) > (A.8)

i?7 - O

(A.6), with m t' ) 4 now leads to the solution

we- I(~R t-& (A.9)

The analysis errors in the steady state are also equal and uncorrelated

Add=~ _~ 6~ 4 6; _(A.10)

The convergence to this steady state in its vicinity depends on

smallness of the ratio

4+<; ~~ (/f,74;.) r(A.11)
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This is less than 1 for -<( I (a damped wave) because 4lU 0 · For

) 0' ~ we note from (A.9) that If4_ 0 O when m 2 , giving us

/ ) <i .* 4 increases with R so thatis

less than 1 for all A. when i I However, a special case

occurs for Ro and - | · This has oM- O= but C/ r. I

In this case the stationary state has zero errors but convergence to it

will be extremely slow or non-existent.

The convergence problem at R _ O for *--=I is made clearer by

noting that

+ (2 7 ~E~ a
Cr

HIa )t, [4 et{( f ) j(A.12)

and

~ j[LAtG~~s~1]+[4tE?(..,~?(A.13)

For 6 4I and C q -/g (f 4; -0 4 and

(ft * ) ( )(A.14)
The slow convergence that this implies for/.40 is therefore easier to

understand as a slow convergence arising from very inaccurate observations(Iar¥ e).
Evidently when O= I in this simple model we cannot distinguish

between these limits because the term in (A.13) of highest order in E

is multiplied by O--I . The analysis accuracy 4q -P ei in this

case is of course sensitive to whether E- is large or .. is small.


